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Abstract

In this study, in-plane stability analysis of non-uniform cross-sectioned thin curved beams under uniformly distributed

dynamic loads is investigated by using the Finite Element Method. The first and second unstable regions are examined for

dynamic stability. In-plane vibration and in-plane buckling are also studied. Two different finite element models,

representing variations of cross-section, are developed by using simple strain functions in the analysis. The results obtained

from this study are compared with the results of other investigators in existing literature for the fundamental natural

frequency and critical buckling load. The effects of opening angle, variations of cross-section, static and dynamic load

parameters on the stability regions are shown in graphics.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Research on the dynamic and static stability of curved beams continues to be one of the most interesting
subjects in recent years. Especially in turbine blades and bridges, it shows itself as a problem of elastic
instability. The dynamic stability of mechanical systems, according to Bolotin’s definition [1], represents a
specific stability of motion. When Bolotin’s approach [1] is examined, three stages, static stability (buckling
analysis), vibration analysis and dynamic stability analysis, are seen to be included in the equation of dynamic
stability. Therefore these three stages are studied in this paper.

Sabir and Aswell [2] have discussed the natural frequency analysis of circular arches deformed in a plane.
The finite elements developed by using different types of shape functions were employed in their analysis. Petyt
and Fleischer [3] have studied the free vibration of a curved beam under various boundary conditions.
Yıldırım [4] has developed a computer program for the free vibration analysis of arcs. The coupled twist-
bending vibrations of complete, incomplete and transversely supported rings have been investigated by Rao
[5]. Moshe and Efraim [6] have investigated in-plane vibrations of shear-deformable curved beams. The exact
dynamic stiffness matrix for a circular beam was used in this study. Sabuncu [7] has also investigated the
vibration analysis of thin curved beams. He used several types of shape functions to develop different curved
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
ARoot cross-sectional area at root of the beam
bR width at the root of the curved beam
bt width at the top of the curved beam
E Young’s modulus
IRoot second moment of area of cross-section

at root of the beam
Ixx second moment of area of cross-section
kcr critical buckling load parameter
ke elastic stiffness matrix of the elemental

finite element
Ke global elastic stiffness matrix
kg geometric stiffness matrix of the elemen-

tal finite element
Kg global geometric stiffness matrix
M global mass (inertia) matrix
me mass (inertia) matrix of the elemental

finite element
P(t) periodic load

Pcr critical buckling load
q generalized coordinates
R radius of the curved beam
T kinetic energy
tR thickness at the root of the curved beam
tt thickness at the top of the curved beam
U strain energy
v circumferential deflection
V strain energy of the periodic force
w radial deflection
O disturbing frequency
b dynamic load parameter
r mass density
o natural frequency
y opening angle of the curved beam
f opening angle of the finite element
c rotation of tangent
a static load parameter
l fundamental frequency parameter
o1 fundamental frequency of a curved beam
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beam finite elements and pointed out the effect of displacement functions on the natural frequencies by
comparing the results. In-plane vibration of a tapered curved beam has been studied by Sabuncu and Erim [8].
They presented a finite element model for the vibration analysis of a tapered curved beam. Linear and non-
linear variations of cross-sections were considered in their analysis. Chidamparam and Leissa [9] have
organized and summarized the extensive published literature on the vibrations of curved bars, beams, rings
and arches of arbitrary shape which lie in a plane. They also considered in-plane, out-of-plane and coupled
vibration and examined various theories that have been developed to model curved beam vibration problems.
In addition, they have studied the free vibrations of circular arches about a prestressed static equilibrium state
[10]. Rossi et al. [11], Gutierrez et al. [12] and Rossi [13] have investigated the in-plane vibration of non-
circular arcs having non-uniform cross-section with a tip mass. Shear force and rotatory inertia effects were
taken into account. They used the finite element approach and the Ritz method in their analysis. Free and
forced in-plane vibrations of circular arches with variable cross-sections and various boundary conditions,
have been investigated by Tong et al. [14]. Oh et al. [15] have examined free vibration of non-circular arches
with non-uniform cross-section. In their study, the differential equations were derived and solved numerically
for the parabolic, catenary and elliptic geometries with different boundary conditions. Kawakami et al. [16]
have used an approximate method to study the analysis for both the in-plane and out-of-plane free vibration
of horizontally curved beams with arbitrary shapes and variable cross-sections. In-plane free vibration
analysis of circular arches with varying cross-sections using differential quadrature method (DQM) has been
studied by Karami and Malekzadeh [17]. Arches with different types of boundary conditions, including those
with elastic constraint against rotation at their ends, were considered in their analysis.

Timoshenko and Gere [18] have examined the buckling analysis of hinged–hinged Bernoulli–Euler curved
beams by using the analytical method. Bazant and Cedolin [19] have discussed the buckling analysis of curved
beams by using analytical and energy methods. The buckling analysis of a curved beam has been studied by
Yoo et al. [20]. They used the Finite Element Method in their analysis. Papangelis and Trahair [21,22] have
studied in-plane and lateral buckling of curved beams by using the finite element analysis. Yang et al. [23,24]
have examined static stability of curved beams. They employed the non-linear equations of equilibrium for a
horizontally curved I-beam and straight-beam approach for the buckling analysis. Natural frequencies and
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buckling loads of a simply supported shallow circular arch with sufficiently small depth-to-radius of curvature
ratio subjected to initial axial tensile and /or compressive forces have been analyzed by Matsunaga [25]. The
DQM has been applied to computation of the eigenvalues of the equations of motion governing the free in-
plane vibration included extensibility of the arch axis and the coupled out-of-plane twist-bending vibrations of
circular arches by Kang et al. [26]. Pi et al. [27] have investigated the in-plane buckling of circular arches with
an arbitrary cross-section and subjected to a radial load uniformly distributed around the arch axis. An energy
method was employed to establish both non-linear equilibrium equations and buckling equilibrium equations
for shallow arches. Huang et al. [28] have marked on in-plane free vibration and static stability of loaded and
shear-deformable circular arches. Chen and Shen [29] have studied vibration and buckling of initially stressed
curved beams by using the principle of virtual work.

The dynamic stability of beams under a periodical axial load by using the Finite Element Method and
Bolotin’s approach, has been studied by Thomas and Abbas [30]. Takahashi et al. [31] have analyzed the
dynamic instability of a circular arch subjected to an in-plane sinusoidal varying load by using a multiple-
degrees-of-freedom approach, the Galerkin method and the harmonic balance method. Briseghella et al. [32]
have investigated the dynamic stability of elastic structures using the Finite Element approach and discussed
the damping effects on the dynamic stability. Free vibration and spatial stability of non-symmetric thin-walled
curved beams with variable curvatures have been examined by Kim et al. [33].

This paper presents the in-plane static and dynamic stabilities of non-uniform cross-sectioned curved beams
subjected to uniformly distributed periodic loading. The equation of motion of a curved beam subjected to a
uniformly distributed periodic force brings out Mathieu–Hill type differential equations. In this study,
Bolotin’s approach is considered and thin curved beams having fixed–fixed boundary conditions are examined
by using the Finite Element Method. Two different finite element models, step and continuous, developed are
used to represent the linear taper of non-uniform cross-section curved beams. The first and second unstable
regions are studied in this paper. The results obtained, on buckling and fundamental frequency, are compared
with the results of other investigators in existing literature. The effects of the variation of the cross-section, the
opening angle of the arch, static and dynamic load parameters on the stability are examined and the results are
given in tables and graphics.

2. Models of curved beams

The boundary conditions and applied loading on a curved beam are shown in Fig. 1. The curved beams
examined in this study, have uniform and non-uniform rectangular cross-sections as shown in Fig. 2. The
variation of cross-section of the linear tapered curved beam is represented by mathematical expressions as
given in Eq. (1). The cross-sections have five different configurations, which for simplicity, are denoted by C1,
C2, C3, C4 and C5. The explanation of these cross-sections is as follows:
C1: Uniform (tR ¼ tt, bR ¼ bt, Fig. 2a),
C2: Unsymmetric tapered with constant width (tR 6¼tt, bR ¼ bt, Fig. 2b),
C3: Double unsymmetric tapered (tR 6¼tt, bR 6¼bt, Fig. 2c),
Fixed
end

Fixed
end

p(t)

φ

θ

R

Fig. 1. Curved beam loaded by uniformly distributed periodic force.
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Fig. 2. Cross-sections of curved beams: (a) uniform (C1, tR ¼ tt, bR ¼ bt); (b) unsymmetric tapered with constant width (C2, tR 6¼tt,

bR ¼ bt); (c) double unsymmetric tapered (C3, tR 6¼tt, bR 6¼bt); (d) symmetric tapered with constant width (C4, tR 6¼tt, bR ¼ bt); (e) double

symmetric tapered (C5, tR 6¼tt, bR 6¼bt).
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C4: Symmetric tapered with constant width (tR6¼tt, bR ¼ bt, Fig. 2d),
C5: Double symmetric tapered (tR 6¼tt, bR 6¼bt, Fig. 2e),
t ¼
ðL� RyÞ

L
ðtR � ttÞ þ tt; b ¼

ðL� RyÞ
L

ðbR � btÞ þ bt. (1)

The buckling and natural frequency parameters are represented by mathematical expressions to be used in
numerical analysis as follows:

kcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PcrR

3=EIRoot

q
; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1

rARootR
4

EIRoot

s
, (2)

where

ARoot ¼ tRbR; IRoot ¼
bRt3R
12

. (3)

3. Theoretical analysis

The following two shape functions are used in the analysis to represent radial and circumferential
deflections (Fig. 3), respectively [2],

w ¼ a1 cos fþ a2 sin fþ a4 � a6f, (4)

v ¼ �a1 sin fþ a2 cos fþ a3 þ a5fþ a6f
2=2. (5)
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Fig. 3. Six degrees of freedom finite element model.
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The deflection vector of the elemental finite element is

qT ¼ ½v1w1c1v2w2c2�, (6)

where

c ¼
dw

dy
�

v

R
. (7)

The potential energy of the curved beam element is

U ¼
1

2

Z l

0

EIxx w00 �
v0

R

� �2

þ EA
w

R
þ v0

� �2" #
dy. (8)

Eq. (8) can be written in matrix form as

U ¼ 1
2
qTkeq (9)

The kinetic energy of the curved beam element is

T ¼
1

2

Z l

0

rAð _wþ _vÞ2 dy. (10)

Eq. (10) can be written in matrix form as

T ¼ 1
2
_qTme _q. (11)

The strain energy V denotes the work done by a uniformly distributed dynamic load P(t) and given by the
equation

V ¼

Z l

0

PðtÞR
dw

dy
�

v

R

� �2

dy. (12)

Eq. (12) can be written in matrix form as

V ¼ 1
2
qTkgq: (13)

Thus, for a finite element, elastic stiffness matrix ke, element geometrical stiffness matrix kg and mass matrix
me are obtained, respectively.

Mass and stiffness matrices of each beam element are used to form global mass and stiffness matrices.
The dynamic response of a beam for a conservative system can be formulated by means of Lagrange’s
equation of motion in which the external forces are expressed in terms of time-dependent potentials,
and then performing the required operations the entire system leads to the governing matrix equation of
motion

M€qþ Ke � PðtÞKg

� �
q ¼ 0. (14)

The periodic uniformly distributed dynamic load PðtÞ ¼ Po þ Pt cos Ot where O is the disturbing frequency,
the static- and time-dependent components of the load can be represented as a fraction of the fundamental
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H. Öztürk et al. / Journal of Sound and Vibration 296 (2006) 277–291282
static buckling load Pcr hence substituting PðtÞ ¼ aPcr þ bPcr cos Ot in Eq. (14) it becomes

M€qþ Ke � aPcrKgs � bPcr cosðOtÞKgt

� �
q ¼ 0, (15)

where the matrices Kgs and Kgt in Eq. (15) reflect the influence of the static and time-dependent components of
the load, respectively. Eq. (15) represents a system of second-order differential equation with periodic
coefficients of the Mathieu–Hill type. From the theory of linear equations with periodic coefficients, the
boundaries between stable and unstable solutions of Eq. (15) are formed by periodic solutions of period T and
2T where T ¼ 2p=O. It has been shown by Bolotin [1] that solutions with period 2T are the ones of greatest
practical importance and that as a first approximation the boundaries of the principal regions of the dynamic
instability can be determined from the equation:

Ke � aPcrKgs �
1

2
bPcrKgt �

O2

4
M

� 	
q ¼ 0. (16)

The two matrices Kgs and Kgt will be identical if the static and time-dependent component of the loads are
applied in the same manner. If Kgs � Kgt � Kg then Eq. (16) becomes

Ke � a�
1

2
b

� �
PcrKg �

O2

4
M

� 	
q ¼ 0. (17)

This equation represents the solution of the three related problems:
(i)
 Free vibration with a ¼ 0; b ¼ 0; and o ¼ O=2 the natural frequency

½Ke � o2M�q ¼ 0. (18)
(ii)
 Static stability with a ¼ 1; b ¼ 0 and O ¼ 0

½Ke � PcrKg�q ¼ 0. (19)
(iii)
 Dynamic stability when all terms are present

Ke � a�
1

2
b

� �
PcrKg �

O2

4
M

� 	
q ¼ 0. (20)
4. Results and discussion

Two different finite element models, step and continuous, are developed to represent the variation of non-
uniform cross-sections. The step model involves meshing a non-uniform cross-sectioned curved beam,
consisting of a discrete number of elements each having a uniform cross-section. Whereas, the continuous
model does not have uniform discrete elements, the variation of cross-section of the continuous model is
represented by mathematical expressions given in Eq. (1).

Table 1 shows the results of the step and continuous finite element models for the critical buckling load and
the fundamental frequency parameters for various numbers of elements. As seen from the table that even using
as little as four elements both results are in close agreement. The results of Step model with 30 elements and
Continuous model with 12 elements are almost identical. Computing time for the Step model with 30 elements
is less than 1 s and for the Continuous model with 12 elements is 45 s. The Continuous model converges faster
and represents the variation of cross-section better than the step model. Since the integration is carried out one
by one to form mass, elastic stiffness and geometric stiffness matrices of each element, computing time takes
longer for the Continuous Model. In order to save computing time as well as not being able to show the
difference of the results obtained by using the developed finite element models in graphical forms, only the
results of step model are used in the graphical representations.

The exact solution of analytical static stability formulation (critical buckling load parameter) for a uniform
fixed–fixed curved beam is given by Timoshenko [18]. Table 2 gives the comparison of the exact solution of
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Table 2

Convergence characteristics of critical buckling load parameters of the present FEM model with the number of elements, for a uniform

cross-section curved beam, y ¼ 601, kexact: 8.621, R ¼ 762mm, b ¼ 25:4mm, t ¼ 2mm, E ¼ 6:89� 1010 N=m2, r ¼ 2770kg=m3

Number of elements kcr ratio critical buckling load parameter

kexact: 8.621

Step model Continuous model

2 10.5304 10.526

4 8.7729 8.769

6 8.6849 8.681

8 8.6666 8.663

10 8.6612 8.658

12 8.6593 8.656

30 8.6574 8.654

Table 1

Comparison of the critical buckling load and fundamental frequency parameters between the step (A and Ixx) and continuous (A(y) and

Ixx(y)) finite element models, bt/bR ¼ 0.5, tt/tR ¼ 0.5 (C3)

Number of

elements

kcr ratio critical buckling load parameters l ratio fundamental frequency parameters

Finite element model: step

(A and Ixx)

Finite element model:

continuous (A(y) and

Ixx(y))

Finite element model: step

(A and Ixx)

Finite element model:

continuous (A(y) and

Ixx(y))

2 6.392 6.183 57.225 55.621

4 4.267 4.365 39.432 40.088

6 4.334 4.265 39.369 39.292

8 4.293 4.257 39.276 39.150

10 4.273 4.252 39.223 39.110

12 4.264 4.250 39.192 39.095

30 4.251 4.248 39.127 39.082

bR ¼ 20mm, tR ¼ 4mm, y ¼ 601, R ¼ 250mm, E ¼ 6:89� 1010 N=m2, r ¼ 2770kg=m3.
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parametric critical buckling load with the solution of present finite element models for various numbers of
elements of a uniform fixed–fixed curved beam. As seen from the table, agreement between the present finite
element models and exact solution results is very good.

The exact solution and the finite element solutions of the fundamental frequency for a uniform fixed–fixed
curved beam are given by Refs. [3,7,8]. Table 3 gives the comparison of the fundamental frequency obtained
by the present finite element models and finite element solutions of other investigators for a uniform
fixed–fixed curved beam. Pety and Fleischer [3] used three different displacement functions in their analysis
and show the accuracy of the functions by comparing the results. Two different displacement functions with
internal nodes were used by Sabuncu [7] for the vibration analysis of uniform curved beams. Sabuncu and
Erim [8] investigated the vibration analysis of uniform and non-uniform cross-sectioned curved beams. As
seen from the table, the results of uniform finite element models based on simple strain functions with or
without internal nodes are in close agreement.

Table 4 shows comparison of the fundamental frequency parameter (l) between the present models and
results of Ref. [17] for symmetric tapered curved beam with constant width (C4) having fixed–fixed boundary
conditions. Close agreement is found.

Effect of opening angle of curvature on the critical buckling load is shown in Fig. 4. When the opening angle
of an arch increases, it means the length of the arch increases, and as a result the curved beam becomes more
flexible. Thus, as shown in Fig. 4, the critical buckling load decreases. It can be noticed from the figure that
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Table 3

Comparison of the fundamental frequency between the present model (C1) and the other investigators FEM results for various number of

elements and frequencies, A ¼ 8:387mm2, L ¼ 101:6mm, R ¼ 762mm, t2=12R2 ¼ 0:154� 10�7, E ¼ 6:89� 1010 N=m2, r ¼ 2770kg=m3

Mode Frequency (Hz)

Pety and Fleischer [3] Sabuncu [7] Sabuncu and Erim [8] Present results

a 4 6 8 2 3 4 4 6 8 4 6 8

b Step Cont Step Cont Step Cont

1 1 667 557 513 423 423 423 456 452 452 455 452 453 449 452 448

2 597 504 469 448 448 448

3 453 449 448

2 1 857 791 760 688 686 686 732 719 717 732 728 719 716 716 713

2 803 759 732 714 712 712

3 730 716 713

3 1 1301 1152 1120 1069 1057 1057 1038 1087 1086 1088 1084 1088 1085 1086 1082

2 1201 1144 1104 1094 1081 1081

3 1007 1085 1082

4 1 1791 1611 1537 1394 1377 1373 1712 1491 1474 1711 1698 1490 1478 1473 1462

2 2660 1617 1523 1483 1458 1454

3 1703 1480 1463

5 1 2945 2400 2292 2226 2103 2073 2839 2255 2234 2840 2818 2249 2232 2232 2215

2 3973 2366 2299 2369 2224 2192

3 2838 2235 2216

6 1 4633 3495 3182 4980 2903 2881 4552 3480 3123 4562 4526 3472 3445 3124 3100

2 6065 3915 3205 5292 3076 3050

3 4584 3448 3102

aNumber of elements.
bDifferent displacement functions used.

Table 4

Comparison of the fundamental frequency parameter (l) between the present model and Ref. [17] results for symmetric tapered with

constant width (C4), R ¼ 750mm, tt ¼ 3mm, b ¼ 20mm, E ¼ 6:89� 1010 N=m2, r ¼ 2770kg=m3

tt/tR ¼ 0.9 tt/tR ¼ 0.83 tt/tR ¼ 0.77

y1 Present [17] Present [17] Present [17]

Step Cont. Step Cont. Step Cont.

20 535.4176 534.9801 535.4500 566.6669 566.2039 566.8193 597.4190 596.9309 597.7229

30 236.5006 236.3074 236.5183 250.3578 250.1533 250.3404 263.9959 263.7802 264.1372

40 131.8963 131.7886 131.9088 139.6661 139.5520 139.7107 147.3139 147.1936 147.3984

50 83.4974 83.4292 83.5073 88.4493 88.3771 88.4809 93.3243 93.2481 93.3824

Step model: 30 elements.Continuous model: 12 elements.
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critical buckling load values of beams having C2 and C4 type cross-sections are close to each other. There is a
similar phenomenon between C3 and C5 type cross-sectioned curved beams. Critical buckling loads of single
tapered curved beams (C2 and C4) are higher than the double tapered curved beams (C3 and C5), respectively,
as expected. It can also be noticed that even though the thickness of C4 tapers twice as much as C2 and the
thickness and width of C5 tapers twice as much as C3 type beams. It seems that symmetric tapered beams are
more stable than expected.
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In Fig. 5, it is seen that when the variation of cross-section diminishes and approaches the uniform cross-
section, the curved beam becomes stiffer; as a result, the critical buckling load increases and takes the value of
the uniform cross-sectioned curved beam. From this figure, it can be said that static stability values of curved
beams having C3, C5, C2 and C4 type cross-sections increases, respectively. This increase decreases as the
cross-section variation diminishes.

It can be noticed from Fig. 6 that when the opening angle of an arch increases, the fundamental frequency
parameter decreases for all the cross-sections as expected. It can also be noticed that the frequency parameters
of C4 and C1 cross-sectioned curved beams are fairly close at about y ¼ 251. Beyond this angle (301–901), the
fundamental frequency parameter of C5 cross-sectioned curved beam is higher than the fundamental
frequencies of other type cross-sectioned curved beams. This is due to shape factor. In addition, the frequency
parameters of C3 and C2 are almost identical.

When the opening angle of an arch increases, the fundamental frequency parameters of curved beams
having the same length but five different cross-sections come closer. This phenomenon can be explained as
follows: when the opening angle of an arch increases, the length of curved beams also increases, consequently
beams become very flexible. The length variation effect on the flexibility is more dominant than the effect of
variation of cross-section.

As shown in Fig. 7, if the variation of the cross-section diminishes and approaches the uniform cross-
section, the fundamental frequency parameters of C2, C3 and C4 cross-sectioned curved beams increase and
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approach the frequency parameter of C1 cross-sectioned curved beam. On the other hand, the fundamental
frequency parameter of C5 cross-sectioned curved beam decreases and approaches the fundamental frequency
of the C1 cross-sectioned curved beam for y ¼ 151, while it increases and approaches the frequency parameter
of C1 cross-sectioned curved beam for y ¼ 601.

From Fig. 8(a), it can be noticed that the first dynamic instability region widens because of the increase in
the opening angle of the arch. Although the cross-sectional area of C1 cross-sectioned curved beam is larger
than the other cross-sections, C1 cross-sectioned curved beam is less stable compared to other cross-sections.
The reason for this is that as in the case of the fundamental frequency, the mass and elastic stiffness as well as
symmetric features of curved beams are quite influential on the dynamic stability. In addition, when the
dynamic load parameter increases, the unstable region widens. As shown in Fig. 8(b), the second dynamic
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instability regions move towards origin and are close to each other, when the opening angle of the arch
increases. From the figure, it can be noticed that the location of the second stability region is scattered and
sequences of these stability regions move down as C1, C3, C2, C4 and C5 at y ¼ 151 and C5, C3, C2, C1 and
C4 at y ¼ 601.

As shown in Figs. 9(a) and (b), if the static load parameter increases, the initial ratio of the disturbing
frequency to the fundamental frequency scatters and moves towards origin. It can be seen from the figures that
the curved beam under periodic loading becomes unstable at a small disturbing frequency and small dynamic
load parameter. When the static load parameter is equal to 0.25, the upper borders of the first unstable region
of the all-curved beams intersect at O1=o1 ¼ 2 for b ¼ 0:5. In addition, for y ¼ 601 the sequence of second
stability region is different from Fig. 8b.

Figs. 10(a) and 11(a) shows that when bt/bR and tt/tR ratios approach unity for a ¼ 0 and a ¼ 0:25, the first
unstable region approaches the region of C1 cross-sectioned curved beam. For both figures, the order of the
first stability regions of all cross-sections does not change from the stability point of view.
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When bt/bR and tt/tR ratios approach unity, the second unstable region approaches the region of C1 cross-
sectioned curved beam as expected in Figs. 10(b) and 11(b). However, it can be observed in these figures that
the orders of the second stability regions for C1, C2, C3, C4 and C5 change for a ¼ 0 and a ¼ 0:25 conditions.

5. Conclusions

In this paper, the dynamic and static stability of non-uniform cross-sectioned curved beams are studied and
the following conclusions are drawn:
�
 When the opening angle of an arch increases, the static stability decreases and the first dynamic instability
region widens. On the other hand, the second instability regions shift to the origin.
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�
 When the cross-section of a non-uniform curved beam approaches uniform cross-section, the curved beam
becomes more stable from the static stability point of view.

�
 If the static load parameter is equal to 0.25, the initial ratios of the first and second disturbing frequency to

the fundamental frequency scatter and move towards origin. The dynamic load parameter is bounded
between the values of zero and 1.5 for the first dynamics instability regions.

�
 For y ¼ 601, the sequences of the second dynamic instability regions for a ¼ 0:25 condition are different

than a ¼ 0 condition.

�
 The unstable region is affected by the variation of cross-section of a curved beam. As indicated in Figs. 10

and 11, the first unstable region of uniform cross-sectioned curved beams is wider and closer to origin than
the other non-uniform cross-sectioned curved beams. But this phenomenon is not valid for the second
unstable regions. The second unstable region of C4 cross-sectioned curved beam is closer to origin than the
other cross-sectioned curved beam.
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Finally, by changing the static and dynamic load parameters, type of the cross-section of a curved beam, the
ratios of dimensions of thickness and width at the tip cross-section to the ones at the root cross-section of the
curved beam, the dynamic stability of the curved beam may be conserved.
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